
LRA Interpolants from
No Man’s Land

Leonardo Alt, Antti E. J. Hyvärinen, and Natasha Sharygina

University of Lugano, Switzerland

Motivation

The goal: Finding the right proof

The tool: Make interpolation on LRA more flexible

The application: LRA for abstractions in software model checking

The keywords: SMT solving, function summaries,

labeled interpolation systems

Interpolants
Given two formulas A and B such that

an interpolant is a formula I such that

Vars(I) ✓ Vars(A) \Vars(B)

A ! I

I ^B ! ?

A ^B ! ?

A
B

I

Interpolants
Given two formulas A and B such that

an interpolant is a formula I such that

Vars(I) ✓ Vars(A) \Vars(B)

A ! I

I ^B ! ?

A ^B ! ?

A
B

I 0I

Interpolants
Given two formulas A and B such that

an interpolant is a formula I such that

Vars(I) ✓ Vars(A) \Vars(B)

A ! I

I ^B ! ?

A ^B ! ?

A
B

I 0I I 00

Interpolants
Given two formulas A and B such that

an interpolant is a formula I such that

Vars(I) ✓ Vars(A) \Vars(B)

A ! I

I ^B ! ?

A ^B ! ?

A
B

Interpolation in Proofs

1. Find a concrete proof for a simple case

2. Generalise the proof

3. Try to prove the general case

A

B

S(x0)| {z }
A

^T (x0, x1) ^ . . . ^ T (xk�1, xk) ^ Err(xk)| {z }
B

Interpolation in Proofs

1. Find a concrete proof for a simple case

2. Generalise the proof

3. Try to prove the general case

A

B

S(x0)| {z }
A

^T (x0, x1) ^ . . . ^ T (xk�1, xk) ^ Err(xk)| {z }
B

I

Interpolation in Proofs

1. Find a concrete proof for a simple case

2. Generalise the proof

3. Try to prove the general case

I(x) ^ T (x, x0) ! I(x0)

Example: HiFrog

Given a C program and a set of assertions

Example: HiFrog

Given a C program and a set of assertions

1. Construct a BMC instance of the program

A

Example: HiFrog

Given a C program and a set of assertions

2. Check the first assertion against the BMC instance

Asrt1

1. Construct a BMC instance of the program

A

Example: HiFrog

Given a C program and a set of assertions

2. Check the first assertion against the BMC instance

Asrt1

1. Construct a BMC instance of the program

A

3. Compute an interpolant out of the proof

I

Example: HiFrog

Given a C program and a set of assertions

2. Check the first assertion against the BMC instance

Asrt1

4. Use the interpolant for checking the consequent assertions

Asrt2

1. Construct a BMC instance of the program

A

3. Compute an interpolant out of the proof

I

Example: HiFrog

Given a C program and a set of assertions

2. Check the first assertion against the BMC instance

Asrt1

4. Use the interpolant for checking the consequent assertions

Asrt2
. . .

1. Construct a BMC instance of the program

A

3. Compute an interpolant out of the proof

I

Example: HiFrog

Given a C program and a set of assertions

2. Check the first assertion against the BMC instance

Asrt1

4. Use the interpolant for checking the consequent assertions

Asrt2

Asrtn

. . .

1. Construct a BMC instance of the program

A

3. Compute an interpolant out of the proof

I

Duality of Interpolants

Duality of Interpolants

A
B

Duality of Interpolants

A
B

I 0

Duality of Interpolants

¬I 0

A
B

What is LRA
Given a set of linear inequalities over real-valued variables,

determine if there are values for the variables that satisfy all the inequalities

0 ≤ 0.5x + 3y − 2z

5 > y

x

y

In 2 dimensions: determine whether half planes have a non-empty intersection

x2 + 2xy + y2 > 1

Solving LRA in SMT

SAT solver Theory solver

Set of LRA inequalities

determines satisfiability

An explanation, subset of the LRA inequalities

The theory solver for LRA is based on the Simplex algorithm

Instance

UnsatUnsat Sat

Simplex in SMT

A pre-processing step:

• All inequalities are written so that left

side is a constant and right side a linear

expression

We end up with two types of entities:

• Bounds on variables

• Bounds on sums of the variables

0 ≤ x + 6y − 4z

0.3 ≥ x + 2y

1 < x − 2y + 3z

5 > y

4 < y

2 > z

0 ≥ x

y
4 5

z
2

x
0

The idea is to repeatedly adjust variable

values to satisfy bounds on the sums, and

change the role of the variables and the

sums.

Simplex Example

0 0.5x + 3y − 2z

0.3 x + 2y

1 x − 2y + 3z

≤

≥

<

y
4 5

2
z

x
0

Simplex Example

≤

≥

<

y

x

x

y

Simplex Example

≤

≥

<

y

x

x

y

Simplex Example

≤

≥

<

y

x

x

y

Simplex Example

≤

≥

<

y

x

x

y

Simplex Example

≤

≥

<

y

x

x

y

Simplex Example

≤

≥

<

y

x

x

y

Just enough to fix the equality

Simplex Example

≤

≥

<

y

x

x

y

u = 0.5x + 3y − 2z

Just enough to fix the equality

Simplex Example

≤

≥

<

y

x

y

u = 0.5x + 3y − 2z

x = 2u − 6y + 4z

Just enough to fix the equality

Simplex Example

≤

≥

<

y

x

y

u = 0.5x + 3y − 2z

x = 2u − 6y + 4z

Just enough to fix the equality

u

Simplex Example

After each adjustment

1. The expressions change

2. One variable is fixed to its bound

Simplex Example

v

u

After each adjustment

1. The expressions change

2. One variable is fixed to its bound

v

u

Simplex Example

v

u

After each adjustment

1. The expressions change

2. One variable is fixed to its bound

v

u

If an expression bound cannot be

satisfied since the variables are at

their bounds, the problem is

unsatisfiable

Simplex Example

v

u

After each adjustment

1. The expressions change

2. One variable is fixed to its bound

v

u

If an expression bound cannot be

satisfied since the variables are at

their bounds, the problem is

unsatisfiable

A conflict is the unsatisfied

expression and the set of expressions

currently bounding its variables.

Simplex Example

v

u

After each adjustment

1. The expressions change

2. One variable is fixed to its bound

v

u

If an expression bound cannot be

satisfied since the variables are at

their bounds, the problem is

unsatisfiable

A conflict is the unsatisfied

expression and the set of expressions

currently bounding its variables.

(1 > 0.5v − u)

Simplex Example

v

u

After each adjustment

1. The expressions change

2. One variable is fixed to its bound

v

u

If an expression bound cannot be

satisfied since the variables are at

their bounds, the problem is

unsatisfiable

A conflict is the unsatisfied

expression and the set of expressions

currently bounding its variables.

(1 > 0.5v − u) ∧ (u > 3)

Simplex Example

v

u

After each adjustment

1. The expressions change

2. One variable is fixed to its bound

v

u

If an expression bound cannot be

satisfied since the variables are at

their bounds, the problem is

unsatisfiable

A conflict is the unsatisfied

expression and the set of expressions

currently bounding its variables.

(1 > 0.5v − u) ∧ (u > 3) ∧ (v < 3)

LRA Interpolation

Assume that the expression

bound that could not be satisfied

was 1 > 0.5v − u

and the bounds for the variables

u, v were

u > 3

v < 3

Assume that (u > 3) ∈ B and

(v < 3) ∈ A, (1 > 0.5v − u) ∈ A.

LRA Interpolation

Assume that the expression

bound that could not be satisfied

was 1 > 0.5v − u

and the bounds for the variables

u, v were

u > 3

v < 3

Assume that (u > 3) ∈ B and

(v < 3) ∈ A, (1 > 0.5v − u) ∈ A.
v

u

A

B

LRA Interpolation

Assume that the expression

bound that could not be satisfied

was 1 > 0.5v − u

and the bounds for the variables

u, v were

u > 3

v < 3

Assume that (u > 3) ∈ B and

(v < 3) ∈ A, (1 > 0.5v − u) ∈ A.
v

u

A

B

The interpolant for A is obtained by

summing to the expression the bounds in A

multiplied by their factors in the expression:

LRA Interpolation

Assume that the expression

bound that could not be satisfied

was 1 > 0.5v − u

and the bounds for the variables

u, v were

u > 3

v < 3

Assume that (u > 3) ∈ B and

(v < 3) ∈ A, (1 > 0.5v − u) ∈ A.
v

u

A

B

The interpolant for A is obtained by

summing to the expression the bounds in A

multiplied by their factors in the expression:

(0.5v − u − 1)

LRA Interpolation

Assume that the expression

bound that could not be satisfied

was 1 > 0.5v − u

and the bounds for the variables

u, v were

u > 3

v < 3

Assume that (u > 3) ∈ B and

(v < 3) ∈ A, (1 > 0.5v − u) ∈ A.
v

u

A

B

The interpolant for A is obtained by

summing to the expression the bounds in A

multiplied by their factors in the expression:

+ 0.5(3 − v) (0.5v − u − 1)

LRA Interpolation

Assume that the expression

bound that could not be satisfied

was 1 > 0.5v − u

and the bounds for the variables

u, v were

u > 3

v < 3

Assume that (u > 3) ∈ B and

(v < 3) ∈ A, (1 > 0.5v − u) ∈ A.
v

u

A

B

The interpolant for A is obtained by

summing to the expression the bounds in A

multiplied by their factors in the expression:

+ 0.5(3 − v) (0.5v − u − 1)

LRA Interpolation

Assume that the expression

bound that could not be satisfied

was 1 > 0.5v − u

and the bounds for the variables

u, v were

u > 3

v < 3

Assume that (u > 3) ∈ B and

(v < 3) ∈ A, (1 > 0.5v − u) ∈ A.
v

u

A

B

The interpolant for A is obtained by

summing to the expression the bounds in A

multiplied by their factors in the expression:

-u − 1 + 1.5

LRA Interpolation

Assume that the expression

bound that could not be satisfied

was 1 > 0.5v − u

and the bounds for the variables

u, v were

u > 3

v < 3

Assume that (u > 3) ∈ B and

(v < 3) ∈ A, (1 > 0.5v − u) ∈ A.
v

u

A

B

The interpolant for A is obtained by

summing to the expression the bounds in A

multiplied by their factors in the expression:

0 < -u − 1 + 1.5

LRA Interpolation

Assume that the expression

bound that could not be satisfied

was 1 > 0.5v − u

and the bounds for the variables

u, v were

u > 3

v < 3

Assume that (u > 3) ∈ B and

(v < 3) ∈ A, (1 > 0.5v − u) ∈ A.
v

u

A

B

The interpolant for A is obtained by

summing to the expression the bounds in A

multiplied by their factors in the expression:

u < 0.5

LRA Interpolation

Assume that the expression

bound that could not be satisfied

was 1 > 0.5v − u

and the bounds for the variables

u, v were

u > 3

v < 3

Assume that (u > 3) ∈ B and

(v < 3) ∈ A, (1 > 0.5v − u) ∈ A.
v

u

A

B

The interpolant for A is obtained by

summing to the expression the bounds in A

multiplied by their factors in the expression:

u < 0.5

Duality-based Interpolation for LRA

Given a primal interpolant

I = c1 ≤ t(x),

the dual interpolant has the form

I’ = c2 < t(x)

Duality-based Interpolation for LRA

Given a primal interpolant

I = c1 ≤ t(x),

the dual interpolant has the form

I’ = c2 < t(x)

v

u

A

B

Duality-based Interpolation for LRA

Given a primal interpolant

I = c1 ≤ t(x),

the dual interpolant has the form

I’ = c2 < t(x)

v

u

A

B

Duality-based Interpolation for LRA

Given a primal interpolant

I = c1 ≤ t(x),

the dual interpolant has the form

I’ = c2 < t(x)

v

u

A

B

Duality-based Interpolation for LRA

Given a primal interpolant

I = c1 ≤ t(x),

the dual interpolant has the form

I’ = c2 < t(x)

v

u

A

B

All the inequalities of the form

c < t(x), c1 ≤ c < c2

are also interpolants for A

Duality-based Interpolation for LRA

Given a primal interpolant

I = c1 ≤ t(x),

the dual interpolant has the form

I’ = c2 < t(x)

v

u

A

B

All the inequalities of the form

c < t(x), c1 ≤ c < c2

are also interpolants for A

I ⟶ I’

Duality-based Interpolation for LRA

Given a primal interpolant

I = c1 ≤ t(x),

the dual interpolant has the form

I’ = c2 < t(x)

v

u

A

B

All the inequalities of the form

c < t(x), c1 ≤ c < c2

are also interpolants for A

I ⟶ I’

In the
paper

Interpolant Duality Visualized

B

A

Interpolant Duality Visualized

c2=t(x)

B

A

c1=t(x)

Interpolant Duality Visualized

A Land
c2=t(x)

B

B Land

A

c1=t(x)

Interpolant Duality Visualized

A Land
No man’s land

c2=t(x)

B

B Land

A

c1=t(x)

Interpolant Duality Visualized

A Land
No man’s land

c2=t(x)

𝛼(c2 − c1)+c1=t(x) B

B Land

A

c1=t(x)

Interpolant Duality Visualized

A Land
No man’s land

c2=t(x)

𝛼(c2 − c1)+c1=t(x) B

B Land

A

c1=t(x)

Experiments on
SV-COMP and HiFrog

The Architecture Overview
Model Checker

OpenSMT A⋀B
SMT Solver

SAT/UNSAT

Interpolation Module

Boolean

LRA

Proof analysis Labelling

Boolean

LRA

Interpolator

Boolean

LRA

Partitions A and B

statistics
Partitions

A and B

UNSAT proof
Labelling

Interpolant

Partitions

A and B

UNSAT proof

UNSAT proof

Implemented in HiFrog

Sources +

Assertions

Assertion
traversal

SMT Encoder

LRA Prop

Interpolating SMT Solver

Theory
solvers

proof
compressor

Prop ITP

LRA ITP

proof

Summary
refiner

SAT

Error trace

Assertion holds

Propositional
summaries

LRA summaries

Interpolation-based

summaries

Results on SMT-LIB

Experiments with three LRA labelling functions:

Strong: the primal interpolant

Weak: the dual interpolant

c = 0.5: the interpolant between dual and primal

Experiments on HiFrog

ITP floppy1 kbfiltr1 diskperf1 mem disk 𝚺

Strong 27100 5120 39900 25600 47600 145000

c = 0.5 25100 5120 39200 25100 41500 136000

Weak 24800 5380 39200 25600 64000 159000

Number of HiFrog refinements (fixed propositional ITP algorithm)

• The difference between minimum and maximum is ~ 15%

• The c = 0.5 ITP provides the best results

Related Work
Nikolaj Bjørner, Arie Gurfinkel:

Property Directed Polyhedral Abstraction. VMCAI 2015

Pudlák:

Lower bounds for resolution and cutting plane proofs and monotone
computations. Journal of Symbolic Logic 1997.

McMillan:

An Interpolating Theorem Prover. Theoretical Computer Science 2005.

D’Silva, Kroening, Purandare, and Weissenbacher:

Interpolant Strength. VMCAI 2010.

Albarghouthi, McMillan:

Beautiful interpolants. CAV 2013.

Dutertre, de Moura:

A fast linear-arithmetic solver for DPLL(T). Logical Methods in Computer Science 2012.

Alt, Hyvärinen, Asadi, and Sharygina:

Duality-Based Interpolation for Quantifier-Free Equalities and Uninterpreted Functions. FMCAD
2017.

Conclusions

LRA interpolation with controlled strength

Provides an infinite family of interpolants based on interpolation duality

Integrated into a model checker

Better heuristics for the labelling function

Apply to fix-point computations in other MC applications

Implementations available at

http://verify.inf.usi.ch/hifrog,

http://verify.inf.usi.ch/opensmt

Future work

http://verify.inf.usi.ch/hifrog

