LRA Interpolants from No Man's Land

Leonardo Alt, **Antti E. J. Hyvärinen**, and Natasha Sharygina University of Lugano, Switzerland

THE LEGEND OF GNOME ANN

Motivation

The goal: Finding the right proof

The tool: Make interpolation on LRA more flexible

The application: LRA for abstractions in software model checking

The keywords: SMT solving, function summaries,

labeled interpolation systems

Given two formulas ${\rm A}$ and ${\rm B}$ such that

 $A \wedge B \to \bot$

an interpolant is a formula *I* such that

 $Vars(I) \subseteq Vars(A) \cap Vars(B)$ $A \to I$ $I \land B \to \bot$

Given two formulas ${\rm A}$ and ${\rm B}$ such that

 $A \wedge B \to \bot$

an interpolant is a formula *I* such that

 $Vars(I) \subseteq Vars(A) \cap Vars(B)$ $A \to I$ $I \land B \to \bot$

Given two formulas ${\rm A}$ and ${\rm B}$ such that

 $A \wedge B \to \bot$

an interpolant is a formula *I* such that

 $\operatorname{Vars}(I) \subseteq \operatorname{Vars}(A) \cap \operatorname{Vars}(B)$ $A \to I$

Given two formulas ${\rm A}$ and ${\rm B}$ such that

 $A \wedge B \to \bot$

an interpolant is a formula *I* such that

 $\operatorname{Vars}(I) \subseteq \operatorname{Vars}(A) \cap \operatorname{Vars}(B)$ $A \to I$

 $I \wedge B \to \bot$

Interpolation in Proofs

- 1. Find a concrete proof for a simple case
- 2. Generalise the proof
- 3. Try to prove the general case

Interpolation in Proofs

- 1. Find a concrete proof for a simple case
- 2. Generalise the proof
- 3. Try to prove the general case

$$\underbrace{S(x_0)}_{A} \land \underbrace{T(x_0, x_1) \land \ldots \land T(x_{k-1}, x_k) \land Err(x_k)}_{B}$$

Interpolation in Proofs

- 1. Find a concrete proof for a simple case
- 2. Generalise the proof
- 3. Try to prove the general case

Given a C program and a set of assertions

1. Construct a BMC instance of the program

- 1. Construct a BMC instance of the program
- 2. Check the first assertion against the BMC instance

- 1. Construct a BMC instance of the program
- 2. Check the first assertion against the BMC instance
- 3. Compute an interpolant out of the proof

- 1. Construct a BMC instance of the program
- 2. Check the first assertion against the BMC instance
- 3. Compute an interpolant out of the proof
- 4. Use the interpolant for checking the consequent assertions

- 1. Construct a BMC instance of the program
- 2. Check the first assertion against the BMC instance
- 3. Compute an interpolant out of the proof
- 4. Use the interpolant for checking the consequent assertions

- 1. Construct a BMC instance of the program
- 2. Check the first assertion against the BMC instance
- 3. Compute an interpolant out of the proof
- 4. Use the interpolant for checking the consequent assertions

What is LRA

Given a set of linear inequalities over real-valued variables,

determine if there are values for the variables that satisfy all the inequalities

In 2 dimensions: determine whether half planes have a non-empty intersection

Solving LRA in SMT

The theory solver for LRA is based on the Simplex algorithm

Simplex in SMT

A pre-processing step:

 All inequalities are written so that left side is a constant and right side a linear expression

We end up with two types of entities:

- Bounds on variables
- Bounds on sums of the variables

The idea is to repeatedly adjust variable values to satisfy bounds on the sums, and change the role of the variables and the sums.

- $0 \leq 0.5x + 3y 2z$
- $0.3 \ge x + 2y$
- $1 \quad < x 2y + 3z$

After each adjustment

- 1. The expressions change
- 2. One variable is fixed to its bound

After each adjustment

After each adjustment

unsatisfiable

A conflict is the unsatisfied expression and the set of expressions currently bounding its variables.

After each adjustment

- 1. The expressions change
- 2. One variable is fixed to its bound

11,

v

If an expression bound cannot be satisfied since the variables are at their bounds, the problem is unsatisfiable

A conflict is the unsatisfied expression and the set of expressions currently bounding its variables.

After each adjustment

- 1. The expressions change
- 2. One variable is fixed to its bound

11,

v

If an expression bound cannot be satisfied since the variables are at their bounds, the problem is unsatisfiable

A conflict is the unsatisfied expression and the set of expressions currently bounding its variables.

1. The expressions change U 2. One variable is fixed to its bound U v11 If an expression bound cannot be satisfied since the variables are at their bounds, the problem is $(1 > 0.5v - u) \land (u > 3)$ unsatisfiable

After each adjustment

A conflict is the unsatisfied expression and the set of expressions currently bounding its variables.

After each adjustment

Assume that the expression

bound that could not be satisfied

was 1 > 0.5v - u

and the bounds for the variables

u, v were

u > 3

v < 3

Assume that $(u > 3) \in B$ and

Assume that the expression

bound that could not be satisfied

was 1 > 0.5v - u

and the bounds for the variables

u, v were

u > 3

v < 3

Assume that $(u > 3) \in B$ and

The interpolant for *A* is obtained by summing to the expression the bounds in *A* multiplied by their factors in the expression:

Assume that the expression bound that could not be satisfied was 1 > 0.5v - u and the bounds for the variables

u, v were

u > 3

v < 3

Assume that $(u > 3) \in B$ and

The interpolant for *A* is obtained by summing to the expression the bounds in *A* multiplied by their factors in the expression:

The interpolant for *A* is obtained by summing to the expression the bounds in *A* multiplied by their factors in the expression:

The interpolant for *A* is obtained by summing to the expression the bounds in *A* multiplied by their factors in the expression:

$$(0.5v - u - 1) + 0.5(3 - v)$$

Assume that the expression bound that could not be satisfied was 1 > 0.5v - uand the bounds for the variables u, v were

u > 3

v < 3

Assume that $(u > 3) \in B$ and

The interpolant for *A* is obtained by summing to the expression the bounds in *A* multiplied by their factors in the expression:

Assume that the expression bound that could not be satisfied was 1 > 0.5v - uand the bounds for the variables u, v were u > 3

v < 3

Assume that $(u > 3) \in B$ and

$$-u - 1 + 1.5$$

The interpolant for *A* is obtained by summing to the expression the bounds in *A* multiplied by their factors in the expression:

Assume that the expression bound that could not be satisfied was 1 > 0.5v - uand the bounds for the variables u, v were u > 3

v < 3

Assume that $(u > 3) \in B$ and

 $(v < 3) \in A, (1 > 0.5v - u) \in A.$

0 < -u - 1 + 1.5

The interpolant for *A* is obtained by summing to the expression the bounds in *A* multiplied by their factors in the expression:

Assume that the expression bound that could not be satisfied was 1 > 0.5v - uand the bounds for the variables u, v were u > 3v < 3

Assume that $(u > 3) \in B$ and

 $(v < 3) \in A, (1 > 0.5v - u) \in A.$

u < 0.5

The interpolant for *A* is obtained by summing to the expression the bounds in *A* multiplied by their factors in the expression:

Assume that the expression bound that could not be satisfied was 1 > 0.5v - uand the bounds for the variables u, v were u > 3v < 3

Assume that $(u > 3) \in B$ and

 $(v < 3) \in A, (1 > 0.5v - u) \in A.$

u < 0.5

Given a primal interpolant

 $I = c_1 \leq t(\boldsymbol{x}),$

the dual interpolant has the form

 $I' = \, c_2 \, < \, t({\boldsymbol{x}})$

Given a primal interpolant

 $I = c_1 \leq t(\boldsymbol{x}),$

the dual interpolant has the form

 $I' = c_2 < \mathit{t}(\pmb{x})$

Given a primal interpolant

 $I = c_1 \leq t(\boldsymbol{x}),$

the dual interpolant has the form

 $I' = c_2 < \mathit{t}(\pmb{x})$

Given a primal interpolant

 $I = c_1 \leq t(\boldsymbol{x}),$

the dual interpolant has the form

 $I' = c_2 < \mathit{t}(\pmb{x})$

Given a primal interpolant

 $I = c_1 \leq t(\boldsymbol{x}),$

the dual interpolant has the form

 $I' = c_2 < t(\pmb{x})$

All the inequalities of the form $c < t(\mathbf{x}), c_1 \leq c < c_2$

aro alco intornolante for

are also interpolants for \boldsymbol{A}

Given a primal interpolant

 $I = c_1 \leq t(\boldsymbol{x}),$

the dual interpolant has the form

 $I' = c_2 < t(\pmb{x})$

All the inequalities of the form $c < t(\mathbf{x}), c_1 \leq c < c_2$

are also interpolants for \boldsymbol{A}

 $I \longrightarrow I'$

Experiments on SV-COMP and HiFrog

The Architecture Overview

Implemented in HiFrog

Results on SMT-LIB

Experiments with three LRA labelling functions:

- Strong: the primal interpolant
- Weak: the dual interpolant
- c = 0.5: the interpolant between dual and primal

Experiments on HiFrog

ITP	floppy1	kbfiltr1	diskperf1	mem	disk	Σ
Strong	27100	5120	39900	25600	47600	145000
c=0.5	25100	5120	39200	25100	41500	136000
Weak	24800	5380	39200	25600	64000	159000

Number of HiFrog refinements (fixed propositional ITP algorithm)

- The difference between minimum and maximum is ~ 15%
- The c = 0.5 ITP provides the best results

Related Work

Nikolaj Bjørner, Arie Gurfinkel:

Property Directed Polyhedral Abstraction. VMCAI 2015

Pudlák:

Lower bounds for resolution and cutting plane proofs and monotone computations. Journal of Symbolic Logic 1997.

McMillan:

An Interpolating Theorem Prover. Theoretical Computer Science 2005.

D'Silva, Kroening, Purandare, and Weissenbacher: Interpolant Strength. VMCAI 2010.

Albarghouthi, McMillan:

Beautiful interpolants. CAV 2013.

Dutertre, de Moura:

A fast linear-arithmetic solver for DPLL(T). Logical Methods in Computer Science 2012.

Alt, Hyvärinen, Asadi, and Sharygina:

Duality-Based Interpolation for Quantifier-Free Equalities and Uninterpreted Functions. FMCAD 2017.

Conclusions

LRA interpolation with controlled strength

Provides an infinite family of interpolants based on interpolation duality Integrated into a model checker

Future work

Better heuristics for the labelling function Apply to fix-point computations in other MC applications

Implementations available at

http://verify.inf.usi.ch/hifrog,

http://verify.inf.usi.ch/opensmt