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Motivation

The goal: Finding the right proof

The tool: Make interpolation on LRA more flexible

The application: LRA for abstractions in software model checking

The keywords: SMT solving, function summaries,


labeled interpolation systems
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Interpolation in Proofs

1. Find a concrete proof for a simple case

2. Generalise the proof

3. Try to prove the general case
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1. Find a concrete proof for a simple case

2. Generalise the proof

3. Try to prove the general case

I(x) ^ T (x, x0) ! I(x0)
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Example: HiFrog

Given a C program and a set of assertions

2. Check the first assertion against the BMC instance

Asrt1

4. Use the interpolant for checking the consequent assertions

Asrt2

Asrtn

. . .

1. Construct a BMC instance of the program

A

3. Compute an interpolant out of the proof

I
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What is LRA
Given a set of linear inequalities over real-valued variables,


determine if there are values for the variables that satisfy all the inequalities

0 ≤ 0.5x + 3y − 2z

5 > y

x

y

In 2 dimensions: determine whether half planes have a non-empty intersection

x2 + 2xy + y2 > 1



Solving LRA in SMT

SAT solver Theory solver

Set of LRA inequalities

determines satisfiability

An explanation, subset of the LRA inequalities

The theory solver for LRA is based on the Simplex algorithm

Instance

UnsatUnsat Sat



Simplex in SMT

A pre-processing step:


• All inequalities are written so that left 

side is a constant and right side a linear 

expression

We end up with two types of entities:


• Bounds on variables


• Bounds on sums of the variables

0 ≤ x + 6y − 4z 

0.3 ≥ x + 2y 

1 < x − 2y + 3z

5 > y 

4 < y 

2 > z 

0 ≥ x

y
4 5

z
2

x
0

The idea is to repeatedly adjust variable 

values to satisfy bounds on the sums, and 

change the role of the variables and the 

sums.



Simplex Example

0      0.5x + 3y − 2z 

0.3    x + 2y 

1      x − 2y + 3z

≤

≥

<

y
4 5

2
z

x
0
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1. The expressions change
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Duality-based Interpolation for LRA

Given a primal interpolant


I = c1 ≤ t(x),


the dual interpolant has the form

I’ = c2 < t(x)

v

u

A

B

All the inequalities of the form


c < t(x), c1 ≤ c < c2 

are also interpolants for A

I ⟶ I’

In the 
paper
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Experiments on  
SV-COMP and HiFrog



The Architecture Overview
Model Checker

OpenSMT A⋀B
SMT Solver

SAT/UNSAT

Interpolation Module

Boolean

LRA

Proof analysis Labelling

Boolean

LRA

Interpolator

Boolean

LRA

Partitions A and B

statistics
Partitions

A and B

UNSAT proof
Labelling

Interpolant

Partitions

A and B

UNSAT proof

UNSAT proof



Implemented in HiFrog

Sources + 

Assertions

Assertion 
traversal

SMT Encoder

LRA Prop

Interpolating SMT Solver

Theory 
solvers

proof 
compressor

Prop ITP

LRA ITP

proof

Summary 
refiner

SAT

Error trace

Assertion holds

Propositional 
summaries

LRA summaries

Interpolation-based

summaries



Results on SMT-LIB

Experiments with three LRA labelling functions:


Strong: the primal interpolant


Weak: the dual interpolant


c = 0.5: the interpolant between dual and primal



Experiments on HiFrog

ITP floppy1 kbfiltr1 diskperf1 mem disk 𝚺

Strong 27100 5120 39900 25600 47600 145000

c = 0.5 25100 5120 39200 25100 41500 136000

Weak 24800 5380 39200 25600 64000 159000

Number of HiFrog refinements (fixed propositional ITP algorithm)


• The difference between minimum and maximum is ~ 15%


• The c = 0.5 ITP provides the best results
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Conclusions

LRA interpolation with controlled strength


Provides an infinite family of interpolants based on interpolation duality


Integrated into a model checker

Better heuristics for the labelling function


Apply to fix-point computations in other MC applications

Implementations available at


http://verify.inf.usi.ch/hifrog,


http://verify.inf.usi.ch/opensmt

Future work

http://verify.inf.usi.ch/hifrog

