## LRA Interpolants from No Man's Land

Leonardo Alt, Antti E. J. Hyvärinen, and Natasha Sharygina University of Lugano, Switzerland

|  |  |  |
| :---: | :---: | :---: |
|  |  |  |

## Motivation

The goal: Finding the right proof
The tool: Make interpolation on LRA more flexible
The application: LRA for abstractions in software model checking

The keywords: SMT solving, function summaries, labeled interpolation systems

## Interpolants

Given two formulas A and B such that

$$
A \wedge B \rightarrow \perp
$$

an interpolant is a formula $I$ such that

$$
\begin{aligned}
& \operatorname{Vars}(I) \subseteq \operatorname{Vars}(A) \cap \operatorname{Vars}(B) \\
& A \rightarrow I \\
& I \wedge B \rightarrow \perp
\end{aligned}
$$



## Interpolants

Given two formulas A and B such that

$$
A \wedge B \rightarrow \perp
$$

an interpolant is a formula $I$ such that

$$
\begin{aligned}
& \operatorname{Vars}(I) \subseteq \operatorname{Vars}(A) \cap \operatorname{Vars}(B) \\
& A \rightarrow I \\
& I \wedge B \rightarrow \perp
\end{aligned}
$$



## Interpolants

Given two formulas $A$ and $B$ such that

$$
A \wedge B \rightarrow \perp
$$

an interpolant is a formula $I$ such that

$$
\begin{aligned}
& \operatorname{Vars}(I) \subseteq \operatorname{Vars}(A) \cap \operatorname{Vars}(B) \\
& A \rightarrow I \\
& I \wedge B \rightarrow \perp
\end{aligned}
$$



## Interpolants

Given two formulas A and B such that

$$
A \wedge B \rightarrow \perp
$$

an interpolant is a formula $I$ such that

$$
\begin{aligned}
& \operatorname{Vars}(I) \subseteq \operatorname{Vars}(A) \cap \operatorname{Vars}(B) \\
& A \rightarrow I \\
& I \wedge B \rightarrow \perp
\end{aligned}
$$



## Interpolation in Proofs

1. Find a concrete proof for a simple case
2. Generalise the proof
3. Try to prove the general case

## Interpolation in Proofs

1. Find a concrete proof for a simple case
2. Generalise the proof
3. Try to prove the general case

$$
\underbrace{S\left(x_{0}\right)}_{\mathrm{A}} \wedge \underbrace{T\left(x_{0}, x_{1}\right) \wedge \ldots \wedge T\left(x_{k-1}, x_{k}\right) \wedge \operatorname{Err}\left(x_{k}\right)}_{\mathrm{B}}
$$



## Interpolation in Proofs

1. Find a concrete proof for a simple case
2. Generalise the proof
3. Try to prove the general case

$$
\underbrace{S\left(x_{0}\right)}_{\mathrm{A}} \wedge \underbrace{T\left(x_{0}, x_{1}\right) \wedge \ldots \wedge T\left(x_{k-1}, x_{k}\right) \wedge \operatorname{Err}\left(x_{k}\right)}_{\mathrm{B}}
$$

$$
I(x) \wedge T\left(x, x^{\prime}\right) \rightarrow I\left(x^{\prime}\right)
$$



## Example: HiFrog

Given a C program and a set of assertions

## Example: HiFrog

Given a C program and a set of assertions

1. Construct a BMC instance of the program


## Example: HiFrog

Given a C program and a set of assertions

1. Construct a BMC instance of the program
2. Check the first assertion against the BMC instance


## Example: HiFrog

Given a C program and a set of assertions

1. Construct a BMC instance of the program
2. Check the first assertion against the BMC instance
3. Compute an interpolant out of the proof


## Example: HiFrog

Given a C program and a set of assertions

1. Construct a BMC instance of the program
2. Check the first assertion against the BMC instance
3. Compute an interpolant out of the proof
4. Use the interpolant for checking the consequent assertions


## Example: HiFrog

Given a C program and a set of assertions

1. Construct a BMC instance of the program
2. Check the first assertion against the BMC instance
3. Compute an interpolant out of the proof
4. Use the interpolant for checking the consequent assertions


## Example: HiFrog

Given a C program and a set of assertions

1. Construct a BMC instance of the program
2. Check the first assertion against the BMC instance
3. Compute an interpolant out of the proof
4. Use the interpolant for checking the consequent assertions


Duality of Interpolants


## Duality of Interpolants



Duality of Interpolants


Duality of Interpolants


## What is LRA

Given a set of linear inequalities over real-valued variables, determine if there are values for the variables that satisfy all the inequalities

$$
\begin{aligned}
& 0 \leq 0.5 x+3 y-2 z \\
& 5>y \\
& x^{2}+2 x y>y^{2}>1
\end{aligned}
$$



In 2 dimensions: determine whether half planes have a non-empty intersection

## Solving LRA in SMT



The theory solver for LRA is based on the Simplex algorithm

## Simplex in SMT

A pre-processing step:

- All inequalities are written so that left
side is a constant and right side a linear expression

We end up with two types of entities:

- Bounds on variables
- Bounds on sums of the variables

The idea is to repeatedly adjust variable values to satisfy bounds on the sums, and change the role of the variables and the sums.

$$
0 \leq x+6 y-4 z
$$

$$
0.3 \geq x+2 y
$$

$$
1<x-2 y+3 z
$$

$$
5>y
$$

$$
4<y
$$

$$
2>z
$$

$$
0 \geq x
$$



0

## Simplex Example

$$
\begin{aligned}
& 0 \leq 0.5 x+3 y-2 z \\
& 0.3 \geq x+2 y \\
& 1 \quad<x-2 y+3 z
\end{aligned}
$$



## Simplex Example



## Simplex Example

$$
u=0.5 x+3 y-2 z
$$



## Simplex Example



## Simplex Example



## Simplex Example

After each adjustment

1. The expressions change
2. One variable is fixed to its bound

## Simplex Example

## After each adjustment

1. The expressions change
2. One variable is fixed to its bound


## Simplex Example

## After each adjustment

1. The expressions change
2. One variable is fixed to its bound


If an expression bound cannot be satisfied since the variables are at
 their bounds, the problem is
unsatisfiable

## Simplex Example

After each adjustment
A conflict is the unsatisfied
expression and the set of expressions
currently bounding its variables.

1. The expressions change
2. One variable is fixed to its bound


If an expression bound cannot be satisfied since the variables are at
 their bounds, the problem is
unsatisfiable

## Simplex Example

After each adjustment
A conflict is the unsatisfied
expression and the set of expressions currently bounding its variables.

1. The expressions change
2. One variable is fixed to its bound


If an expression bound cannot be satisfied since the variables are at their bounds, the problem is unsatisfiable

$$
(1>0.5 v-u)
$$

## Simplex Example

## After each adjustment

A conflict is the unsatisfied
expression and the set of expressions currently bounding its variables.

1. The expressions change
2. One variable is fixed to its bound


## Simplex Example

## After each adjustment

A conflict is the unsatisfied
expression and the set of expressions currently bounding its variables.

1. The expressions change
2. One variable is fixed to its bound


## LRA Interpolation

Assume that the expression
bound that could not be satisfied
was $1>0.5 v-u$
and the bounds for the variables
$u, v$ were
$u>3$
$v<3$
Assume that $(u>3) \in B$ and
$(v<3) \in A,(1>0.5 v-u) \in A$.

## LRA Interpolation

Assume that the expression bound that could not be satisfied was $1>0.5 v-u$
and the bounds for the variables

$$
\begin{gathered}
u, v \text { were } \\
u>3 \\
v<3
\end{gathered}
$$

Assume that $(u>3) \in B$ and

$$
(v<3) \in A,(1>0.5 v-u) \in A
$$



## LRA Interpolation

The interpolant for $A$ is obtained by
summing to the expression the bounds in $A$ multiplied by their factors in the expression:

Assume that the expression bound that could not be satisfied was $1>0.5 v-u$
and the bounds for the variables

$$
\begin{gathered}
u, v \text { were } \\
u>3 \\
v<3
\end{gathered}
$$

Assume that $(u>3) \in B$ and

$$
(v<3) \in A,(1>0.5 v-u) \in A .
$$



The interpolant for $A$ is obtained by

## LRA Interpolation

summing to the expression the bounds in $A$ multiplied by their factors in the expression:

Assume that the expression bound that could not be satisfied was $1>0.5 v-u$
and the bounds for the variables

$$
\begin{gathered}
u, v \text { were } \\
u>3 \\
v<3
\end{gathered}
$$

Assume that $(u>3) \in B$ and
$(v<3) \in A,(1>0.5 v-u) \in A$.


The interpolant for $A$ is obtained by

## LRA Interpolation

summing to the expression the bounds in $A$
multiplied by their factors in the expression:

Assume that the expression bound that could not be satisfied was $1>0.5 v-u$
and the bounds for the variables
$u, v$ were
$u>3$
$v<3$
Assume that $(u>3) \in B$ and
$(v<3) \in A,(1>0.5 v-u) \in A$.


The interpolant for $A$ is obtained by

## LRA Interpolation

Assume that the expression bound that could not be satisfied was $1>0.5 v-u$
and the bounds for the variables

$$
\begin{gathered}
u, v \text { were } \\
u>3 \\
v<3
\end{gathered}
$$

Assume that $(u>3) \in B$ and

$$
(v<3) \in A,(1>0.5 v-u) \in A
$$

summing to the expression the bounds in $A$ multiplied by their factors in the expression:

$$
(0.5 v-u-1)+0.5(3-v)
$$



The interpolant for $A$ is obtained by

## LRA Interpolation

Assume that the expression bound that could not be satisfied was $1>0.5 v-u$
and the bounds for the variables

$$
\begin{gathered}
u, v \text { were } \\
u>3 \\
v<3
\end{gathered}
$$

Assume that $(u>3) \in B$ and

$$
(v<3) \in A,(1>0.5 v-u) \in A .
$$

summing to the expression the bounds in $A$ multiplied by their factors in the expression:

$$
-u-1+1.5
$$



The interpolant for $A$ is obtained by

## LRA Interpolation

Assume that the expression bound that could not be satisfied was $1>0.5 v-u$
and the bounds for the variables

$$
\begin{gathered}
u, v \text { were } \\
u>3 \\
v<3
\end{gathered}
$$

Assume that $(u>3) \in B$ and

$$
(v<3) \in A,(1>0.5 v-u) \in A .
$$

summing to the expression the bounds in $A$ multiplied by their factors in the expression:

$$
0<-u-1+1.5
$$



## LRA Interpolation

Assume that the expression bound that could not be satisfied was $1>0.5 v-u$
and the bounds for the variables

$$
\begin{gathered}
u, v \text { were } \\
u>3 \\
v<3
\end{gathered}
$$

Assume that $(u>3) \in B$ and

$$
(v<3) \in A,(1>0.5 v-u) \in A .
$$

The interpolant for $A$ is obtained by
summing to the expression the bounds in $A$ multiplied by their factors in the expression:

$$
u<0.5
$$

## LRA Interpolation

Assume that the expression bound that could not be satisfied was $1>0.5 v-u$
and the bounds for the variables

```
u,v were
    u>3
    v<3
```

Assume that $(u>3) \in B$ and $(v<3) \in A,(1>0.5 v-u) \in A$.

The interpolant for $A$ is obtained by
summing to the expression the bounds in $A$ multiplied by their factors in the expression:

$$
u<0.5
$$



## Duality-based Interpolation for LRA

Given a primal interpolant

$$
I=c_{1} \leq t(\boldsymbol{x})
$$

the dual interpolant has the form
$I^{\prime}=c_{2}<t(\boldsymbol{x})$

## Duality-based Interpolation for LRA

Given a primal interpolant

$$
I=c_{1} \leq t(\boldsymbol{x})
$$

the dual interpolant has the form
$I^{\prime}=c_{2}<t(\boldsymbol{x})$


## Duality-based Interpolation for LRA

Given a primal interpolant

$$
I=c_{1} \leq t(x)
$$

the dual interpolant has the form
$I^{\prime}=c_{2}<t(\boldsymbol{x})$


## Duality-based Interpolation for LRA

Given a primal interpolant

$$
I=c_{1} \leq t(\boldsymbol{x})
$$

the dual interpolant has the form
$I^{\prime}=c_{2}<t(\boldsymbol{x})$


## Duality-based Interpolation for LRA

Given a primal interpolant
$I=c_{1} \leq t(\boldsymbol{x})$,
the dual interpolant has the form
$I^{\prime}=c_{2}<t(\boldsymbol{x})$

All the inequalities of the form
$c<t(\boldsymbol{x}), c_{1} \leq c<c_{2}$
are also interpolants for $A$


## Duality-based Interpolation for LRA

Given a primal interpolant
$I=c_{1} \leq t(x)$,
the dual interpolant has the form
$I^{\prime}=c_{2}<t(\boldsymbol{x})$

All the inequalities of the form
$c<t(\boldsymbol{x}), c_{1} \leq c<c_{2}$
are also interpolants for $A$
$I \rightarrow I^{\prime}$


## Duality-based Interpolation for LRA

Given a primal interpolant
$I=c_{1} \leq t(x)$,
the dual interpolant has the form $I^{\prime}=c_{2}<t(x)$

All the inequalities of the form
$c<t(x), c_{1} \leq c<c_{2}$
are also interpolants for $A$
$I \rightarrow I^{\prime}$

## Interpolant Duality Visualized



## Interpolant Duality Visualized



## Interpolant Duality Visualized



## Interpolant Duality Visualized



## Vnterpolant Duality Visualized



## Vnterpolant Duality Visualized

## $B$ Land

## A Land

A

Experiments on SV-COMP and HiFrog

## The Architecture Overview



## Implemented in HiFrog



## Results on SMT-LIB

Experiments with three LRA labelling functions:
Strong: the primal interpolant
Weak: the dual interpolant
$c=0.5$ : the interpolant between dual and primal

## Experiments on HiFrog

| ITP | floppy1 | kbfiltr1 | diskperf1 | mem | disk | $\boldsymbol{\Sigma}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Strong | 27100 | 5120 | 39900 | 25600 | 47600 | 145000 |
| $c=0.5$ | 25100 | 5120 | 39200 | 25100 | 41500 | 136000 |
| Weak | 24800 | 5380 | 39200 | 25600 | 64000 | 159000 |

Number of HiFrog refinements (fixed propositional ITP algorithm)

- The difference between minimum and maximum is $\sim 15 \%$
- The $c=0.5$ ITP provides the best results


## Related Work

Nikolaj Bjørner, Arie Gurfinkel:
Property Directed Polyhedral Abstraction. VMCAI 2015
Pudlák:
Lower bounds for resolution and cutting plane proofs and monotone computations. Journal of Symbolic Logic 1997.

McMillan:
An Interpolating Theorem Prover. Theoretical Computer Science 2005.
D'Silva, Kroening, Purandare, and Weissenbacher:
Interpolant Strength. VMCAI 2010.
Albarghouthi, McMillan:
Beautiful interpolants. CAV 2013.
Dutertre, de Moura:
A fast linear-arithmetic solver for DPLL(T). Logical Methods in Computer Science 2012.
Alt, Hyvärinen, Asadi, and Sharygina:
Duality-Based Interpolation for Quantifier-Free Equalities and Uninterpreted Functions. FMCAD 2017.

## Conclusions

LRA interpolation with controlled strength
Provides an infinite family of interpolants based on interpolation duality Integrated into a model checker

## Future work

Better heuristics for the labelling function
Apply to fix-point computations in other MC applications

Implementations available at
http://verify.inf.usi.ch/hifrog,
http://verify.inf.usi.ch/opensmt

